998 resultados para 090702 Environmental Engineering Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human-specific Bacteroides HF183 (HS-HF183), human-specific Enterococci faecium esp (HS-esp), human-specific adenoviruses (HS-AVs) and human-specific polyomaviruses (HS-PVs) assays were evaluated in freshwater, seawater and distilled water to detect fresh sewage. The sewage spiked water samples were also tested for the concentrations of traditional fecal indicators (i.e., Escherichia coli, enterococci and Clostridium perfringens) and enteric viruses such as enteroviruses (EVs), sapoviruses (SVs), and torquetenoviruses (TVs). The overall host-specificity of the HS-HF183 marker to differentiate between humans and other animals was 98%. However, the HS-esp, HS-AVs and HS-PVs showed 100% hostspecificity. All the human-specific markers showed >97% sensitivity to detect human fecal pollution. E. coli, enterococci and, C. perfringens were detected up to dilutions of sewage 10_5, 10_4 and 10_3 respectively.HS-esp, HS-AVs, HS-PVs, SVs and TVs were detected up to dilution of sewage 10_4 whilst EVs were detected up to dilution 10_5. The ability of the HS-HF183 marker to detect freshsewagewas3–4 orders ofmagnitude higher than that of the HS-esp and viral markers. The ability to detect fresh sewage in freshwater, seawater and distilled water matrices was similar for human-specific bacterial and viral marker. Based on our data, it appears that human-specific molecular markers are sensitive measures of fresh sewage pollution, and the HS-HF183 marker appears to be the most sensitive among these markers in terms of detecting fresh sewage. However, the presence of the HS-HF183 marker in environmental waters may not necessarily indicate the presence of enteric viruses due to their high abundance in sewage compared to enteric viruses. More research is required on the persistency of these markers in environmental water samples in relation to traditional fecal indicators and enteric pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Port land uses are subjected to unique anthropogenic activities compared to typical urban land uses. This uniqueness results in distinctive stormwater quality characteristics. Such distinction in stormwater quality has made conventional approaches used for pollutant load estimations inaccurate. This is also the case for the Port of Brisbane (PoB). The study discussed in the paper was conducted to estimate the pollutant contributions from Port specific land uses at PoB. For estimation, software modules embedded in Mike URBAN were used. An innovative approach was adopted in modelling where the conventional model calibration step was not needed to be performed to generate suitable site specific parameters. Instead, equations and site specific parameters that replicate pollutant build-up and wash-off were generated from an extensive field investigation. Models were simulated incorporating site specific parameters from six different Port specific land uses and rainfall events from three representative years. Outcomes of the modelling exercise were used to identify the distinct pollutant contributions from different Port land uses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variability of input parameters is the most important source of overall model uncertainty. Therefore, an in-depth understanding of the variability is essential for uncertainty analysis of stormwater quality model outputs. This paper presents the outcomes of a research study which investigated the variability of pollutants build-up characteristics on road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary highly even within the same land use. Additionally, industrial land use showed relatively higher variability of maximum build-up, build-up rate and particle size distribution, whilst the commercial land use displayed a relatively higher variability of pollutant-solid ratio. Among the various build-up parameters analysed, D50 (volume-median-diameter) displayed the relatively highest variability for all three land uses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to modelling the resilience of a generic (potable) water supply system. The system is contextualized as a meta-system consisting of three subsystems to represent the natural catchment, the water treatment plant and the water distribution infrastructure for urban use. An abstract mathematical model of the meta-system is disaggregated progressively to form a cascade of equations forming a relational matrix of models. This allows the investigation of commonly implicit relationships between various operational components within the meta system, the in-depth understanding of specific system components and influential factors and the incorporation of explicit disturbances to explore system behaviour. Consequently, this will facilitate long-term decision making to achieve sustainable solutions for issues such as, meeting a growing demand or managing supply-side influences in the meta-system under diverse water availability regimes. This approach is based on the hypothesis that the means to achieve resilient supply of water may be better managed by modelling the effects of changes at specific levels that have a direct or in some cases indirect impact on higher-order outcomes. Additionally, the proposed strategy allows the definition of approaches to combine disparate data sets to synthesise previously missing or incomplete higher-order information, a scientifically robust means to define and carry out meta-analyses using knowledge from diverse yet relatable disciplines relevant to different levels of the system and for enhancing the understanding of dependencies and inter-dependencies of variable factors at various levels across the meta-system. The proposed concept introduces an approach for modelling a complex infrastructure system as a meta system which consists of a combination of bio-ecological, technical and socio-technical subsystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The host specificity of the five published sewage-associated Bacteroides markers (i.e., HF183, BacHum, HuBac, BacH and Human-Bac) was evaluated in Southeast Queensland, Australia by testing fecal DNA samples (n = 186) from 11 animal species including human fecal samples collected via influent to a sewage treatment plant (STP). All human fecal samples (n = 50) were positive for all five markers indicating 100% sensitivity of these markers. The overall specificity of the HF183 markers to differentiate between humans and animals was 99%. The specificities of the BacHum and BacH markers were > 94%, suggesting that these markers are suitable for sewage pollution in environmental waters in Australia. The BacHum (i.e., 63% specificity) and Human-Bac (i.e., 79% specificity) markers performed poorly in distinguishing between the sources of human and animal fecal samples. It is recommended that the specificity of the sewage-associated markers must be rigorously tested prior to its application to identify the sources of fecal pollution in environmental waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to pathogens from potable and non-potable uses of roof-harvested rainwater in South East Queensland (SEQ). A total of 84 rainwater samples were analysed for the presence of faecal indicators (using culture based methods) and zoonotic bacterial and protozoan pathogens using binary and quantitative PCR (qPCR). The concentrations of Salmonella invA, and Giardia lamblia β-giradin genes ranged from 65-380 genomic units/1000 mL and 9-57 genomic units/1000 mL of water, respectively. After converting gene copies to cell/cyst number, the risk of infection from G. lamblia and Salmonella spp. associated with the use of rainwater for bi-weekly garden hosing was calculated to be below the threshold value of 1 extra infection per 10,000 persons per year. However, the estimated risk of infection from drinking the rainwater daily was 44-250 (for G. lamblia) and 85-520 (for Salmonella spp.) infections per 10,000 persons per year. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically discussed. Nevertheless, it would seem prudent to disinfect rainwater for potable use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to evaluate the suitability of Escherichia coli, enterococci and C. perfringens to assess the microbiological quality of roof harvested rainwater, and to assess whether the concentrations of these faecal indicators can be used to predict the presence or absence of specific zoonotic bacterial or protozoan pathogens. From a total of 100 samples tested, respectively 58%, 83% and 46% of samples were found to be positive for E. coli, enterococci and C. perfringens spores, as determined by traditional culture based methods. Additionally, in the samples tested, 7%, 19%, 1%, 8%, 17%, and 15% were PCR positive for A. hydrophila lip, C. coli ceuE, C. jejuni mapA, L. pneumophila mip, Salmonella invA, and G. lamblia β-giardin genes. However, none of the samples was positive for E. coli O157 LPS, VT1, VT2 and C. parvum COWP genes. The presence or absence of these potential pathogens did not correlate with any of the faecal indicator bacterial concentrations as determined by a binary logistic regression model. The roof-harvested rainwater samples tested in this study appear to be of poor microbiological quality and no significant correlation was found between the concentration of faecal indicators and pathogenic microorganisms. The use of faecal indicator bacteria raises questions regarding their reliability in assessing the microbiological quality of water and particularly their poor correlation with pathogenic microorganisms. The presence of one or more zoonotic pathogens suggests that the microbiological analysis of water should be performed, and appropriate treatment measures should be undertaken especially in tanks where the water is used for drinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45µm), and three particulate fractions (0.45-75µm, 75-150µm and >150µm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the outcomes of a research project on nutrients build-up on urban road surfaces. Nutrient build-up was investigated on road sites belonging to residential, industrial and commercial land use. Collected build-up samples were separated into five particle size ranges and were tested for total nitrogen (TN), total phosphorus (TP) and sub species of nutrients, namely, NO2-, NO3-, TKN and PO43-. Multivariate analytical techniques were used to analyse the data and to develop detailed understanding on build-up. Data analysis revealed that the solids loads on urban road surfaces are highly influenced by factors such as land use, antecedent dry period and traffic volume. However, the nutrient build-up process was found to be independent of the type of land use. It was solely dependent on the particle size of solids build-up. Most of the nutrients were associated with the particle size range <150 μm. Therefore, the removal of particles below 150 µm from road surfaces is of importance for the removal of nitrogen and phosphorus from road surface solids build-up. It is also important to consider the differences in the composition of nitrogen and phosphorus build-up in the context of designing effective stormwater quality mitigation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the outcomes of a study which focused on evaluating roof surfaces as stormwater harvesting catchments. Build-up and wash-off samples were collected from model roof surfaces. The collected build-up samples were separated into five different particle size ranges prior to the analysis of physico-chemical parameters. Study outcomes showed that roof surfaces are efficient catchment surfaces for the deposition of fine particles which travel over long distances. Roof surfaces contribute relatively high pollutant loads to the runoff and hence significantly influence the quality of the harvested rainwater. Pollutants associated with solids build-up on roof surfaces can vary with time, even with minimal changes to total solids load and particle size distribution. It is postulated that this variability is due to changes in distant atmospheric pollutant sources and wind patterns. The study highlighted the requirement for first flush devices to divert the highly polluted initial portion of roof runoff. Furthermore, it is highly recommended to not to harvest runoff from small intensity rainfall events since there is a high possibility that the runoff would contain a significant amount of pollutants even after the initial runoff fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement, where necessary. To this end, the Port of Brisbane Corporation aimed to develop a port specific stormwater model for the Fisherman Islands facility. The need has to be considered in the context of the proposed future developments of the Port area. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is that it seeks to undertake research to assist the Port in strengthening the environmental custodianship of the Port area through ‘cutting edge’ research and its translation into practical application. ------------------ The project was separated into two stages. The first stage developed a quantitative understanding of the generation potential of pollutant loads in the existing land uses. This knowledge was then used as input for the stormwater quality model developed in the subsequent stage. The aim is to expand this model across the yet to be developed port expansion area. This is in order to predict pollutant loads associated with stormwater flows from this area with the longer term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. ----------------- Study approach: Stage 1 of the overall study confirmed that Port land uses are unique in terms of the anthropogenic activities occurring on them. This uniqueness in land use results in distinctive stormwater quality characteristics different to other conventional urban land uses. Therefore, it was not scientifically valid to consider the Port as belonging to a single land use category or to consider as being similar to any typical urban land use. The approach adopted in this study was very different to conventional modelling studies where modelling parameters are developed using calibration. The field investigations undertaken in Stage 1 of the overall study helped to create fundamental knowledge on pollutant build-up and wash-off in different Port land uses. This knowledge was then used in computer modelling so that the specific characteristics of pollutant build-up and wash-off can be replicated. This meant that no calibration processes were involved due to the use of measured parameters for build-up and wash-off. ---------------- Conclusions: Stage 2 of the study was primarily undertaken using the SWMM stormwater quality model. It is a physically based model which replicates natural processes as closely as possible. The time step used and catchment variability considered was adequate to accommodate the temporal and spatial variability of input parameters and the parameters used in the modelling reflect the true nature of rainfall-runoff and pollutant processes to the best of currently available knowledge. In this study, the initial loss values adopted for the impervious surfaces are relatively high compared to values noted in research literature. However, given the scientifically valid approach used for the field investigations, it is appropriate to adopt the initial losses derived from this study for future modelling of Port land uses. The relatively high initial losses will reduce the runoff volume generated as well as the frequency of runoff events significantly. Apart from initial losses, most of the other parameters used in SWMM modelling are generic to most modelling studies. Development of parameters for MUSIC model source nodes was one of the primary objectives of this study. MUSIC, uses the mean and standard deviation of pollutant parameters based on a normal distribution. However, based on the values generated in this study, the variation of Event Mean Concentrations (EMCs) for Port land uses within the given investigation period does not fit a normal distribution. This is possibly due to the fact that only one specific location was considered, namely the Port of Brisbane unlike in the case of the MUSIC model where a range of areas with different geographic and climatic conditions were investigated. Consequently, the assumptions used in MUSIC are not totally applicable for the analysis of water quality in Port land uses. Therefore, in using the parameters included in this report for MUSIC modelling, it is important to note that it may result in under or over estimations of annual pollutant loads. It is recommended that the annual pollutant load values given in the report should be used as a guide to assess the accuracy of the modelling outcomes. A step by step guide for using the knowledge generated from this study for MUSIC modelling is given in Table 4.6. ------------------ Recommendations: The following recommendations are provided to further strengthen the cutting edge nature of the work undertaken: * It is important to further validate the approach recommended for stormwater quality modelling at the Port. Validation will require data collection in relation to rainfall, runoff and water quality from the selected Port land uses. Additionally, the recommended modelling approach could be applied to a soon-to-be-developed area to assess ‘before’ and ‘after’ scenarios. * In the modelling study, TSS was adopted as the surrogate parameter for other pollutants. This approach was based on other urban water quality research undertaken at QUT. The validity of this approach should be further assessed for Port land uses. * The adoption of TSS as a surrogate parameter for other pollutants and the confirmation that the <150 m particle size range was predominant in suspended solids for pollutant wash-off gives rise to a number of important considerations. The ability of the existing structural stormwater mitigation measures to remove the <150 m particle size range need to be assessed. The feasibility of introducing source control measures as opposed to end-of-pipe measures for stormwater quality improvement may also need to be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the host-sensitivity and -specificity of JCV and BKV polyomaviruses were evaluated by testing wastewater/fecal samples from nine host groups in Southeast Queensland, Australia. The JCV and BKV polyomaviruses were detected in 48 human wastewater samples collected from the primary and secondary effluent suggesting high sensitivity of these viruses in human wastewater. Of the 81 animal wastewater/fecal samples tested, 80 were PCR negative for this marker. Only one sample from pig wastewater was positive. Nonetheless, the overall host-specificity of these viruses to differentiate between human and animal wastewater/fecal samples was 0.99. To our knowledge, this is the first study in Australia that reports the high specificity of JCV and BKV polyomaviruses. To evaluate the field application of these viruses to detect human fecal pollution, 20 environmental samples were collected from a coastal river. Of the 20 samples tested, 15% and 70% samples exceeded the regulatory guidelines for E. coli and enterococci levels for marine waters. In all, 5 (25%) samples were PCR positive for JCV and BKV indicated the presence of human fecal pollution in the studied river. The results suggest that JCV and BKV detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.